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Abstract 

 
 Response of a shock front to small pre-shock non-uniformities of density, 

pressure and velocity is studied theoretically and numerically. These pre-shock non-

uniformities emulate imperfections of a laser target, due either to its manufacturing, like 

joints or feeding tubes, or to pre-shock perturbation seeding/growth, as well as density 

fluctuations in foam targets, “thermal layers” near heated surfaces, etc. Similarly to the 

shock-wave interaction with a small non-uniformity localized at a material interface, 

which triggers a classical Richtmyer-Meshkov (RM) instability, interaction of a shock 

wave with periodic or localized pre-shock perturbations distributed in the volume distorts 

the shape of the shock front and can cause a RM-type instability growth. Explicit 

asymptotic formulae describing distortion of the shock front and the rate of RM-type 

growth are presented. These formulae are favorably compared both to the exact solutions 
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of the corresponding initial-boundary-value problem and to numerical simulations. It is 

demonstrated that a small density modulation localized sufficiently close to a flat target 

surface produces the same perturbation growth as an “equivalent” ripple on the surface of 

a uniform target, characterized by the same initial areal mass modulation amplitude. 

 
PACS: 52.57.Fg, 52.35.Tc, 47.40.-x, 47.20.-k 
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I. INTRODUCTION 

 When an initially symmetric shock wave, perfectly planar or spherical, propagates 

into a non-uniform medium, its front shape becomes distorted. The perturbed shock front 

leaves a sonic/entropy/vorticity perturbation field in the shocked fluid behind it. 

Perturbations produced this way, in turn, can trigger either a Rayleigh-Taylor (RT) or a 

Richtmyer-Meshkov-like (RM-type)1 instability growth, particularly if an ablation front 

or a material interface is present nearby. 

 The response of shock fronts and post-shock flows to the pre-shock non-

uniformities is of interest for a wide range of applications, primarily in the area of laser 

fusion:  

 1) In direct-drive laser fusion, one of the most promising methods of suppressing 

the laser imprint2 and mitigating the RT growth through tailoring the target adiabat3 is 

based on irradiating the target with a short laser pulse (spike) prior to the main pulse that 

accelerates and implodes it. The spike produces a decelerating shock wave propagating 

into the target, and a rarefaction wave immediately following it. Such “impulsive 

loading” of the target has been shown to produce strong oscillations of the shock front 

and the areal mass in the shocked material, amplifying the non-uniformities due to the 

target manufacturing imperfections and to the spike pre-pulse imprint.4, 5 The subsequent 

strong shock wave produced by the main laser pulse propagates through the perturbation 

field left after the spike. 

 2) In some of the direct-drive laser fusion target designs, the ablator is a layer of 

DT wetted or empty plastic foam6 that helps increase the driving laser beam absorption in 

the ablator and improve its stability. Foam, being uniform on the average, contains small-
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scale density non-uniformities, which might affect the macroscopic shock dynamics.7 It is 

important to know whether or not the small-scale foam non-uniformities can also 

contribute to the shock and areal mass perturbation growth in the target. 

 3) There are certain practical advantages of having spherical laser fusion targets 

manufactured with some localized non-uniformities, such as a “thin annular joint 

extending from the inner to the outer shell radius,” where two beryllium hemispheres are 

bonded,8 or “a narrow bore fill tube to charge an ignition capsule in situ with deuterium-

tritium fuel.”9   

 4) Deformation of a blast wave in long thin regions of lower density was first 

observed during nuclear testing and later labeled “the thermal layer effect,”10 and 

extensively studied, see Ref. 11 and references therein. Such pre-shock “thermal layers,” 

where the temperature is higher and the density lower than in the ambient medium, 

thereby forming a “wall-supported shock precursor,” can be produced near heated walls 

in shock-tube,12 laser13 and plasma-focus14 laboratory experiments.  

 Small-amplitude theory describing the interaction of a shock wave with a non-

uniformity localized at a material interface had been first developed by Richtmyer15 and 

later advanced by many researchers, see Refs. 16-17 and references therein. Given the 

importance of shock interaction with small pre-shock non-uniformities for many 

applications, it is rather surprising that Richtmyer’ approach has not been extended so far 

to produce a theory describing the shock distortion and the post-shock flow evolution 

caused by the pre-shock non-uniformities distributed in the volume.  

 In this article, we present such a theory based on small-amplitude, linear stability 

analysis, for a planar geometry. The background post-shock and pre-shock fluids are 
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assumed to be uniform, and the unperturbed shock strength maintained constant in time. 

The pre-shock perturbations considered are non-propagating structures, such as 

density/entropy modulation, as well as standing sonic waves. We present the results for a 

shock wave which is either incident from a half-space where there is no non-uniformity 

(isolated) or supported by a piston. A free surface and an ablation front, where a constant 

pressure is maintained, and a rigid wall are examples of the piston considered below. 

Some of the results of our theory are directly applicable to, and the other are easily 

generalized for the case when a RM-unstable material interface serves as a piston driving 

a constant-strength transmitted shock wave into a weakly non-uniform fluid. Our theory 

applies to the shock interaction with small-amplitude non-uniformities, both periodic and 

localized in space, such as “joints”, “tubes” and “thermal layers.” It is not applicable to a 

blast wave, whose strength decreases with time,11 or to a shock wave driven up the 

density gradient produced by a spike.2-5 Further development of the theory to cover these 

cases is obviously needed, which is beyond the scope of the present article.   

 In Section II we present formulation of the problem, perturbation equations, 

boundary conditions, and the elementary theory of shock distortion for the simplest cases. 

In Section III we describe the general theory and compare the time evolution of the 

perturbed shock front to our explicit asymptotic formulae. Section IV compares our 

analytical results with numerical simulations. In Section V we conclude with a 

discussion. 
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II. FORMULATION OF THE PROBLEM AND ELEMENTARY THEORY 

A. Perturbation equations, initial and boundary conditions 

 Consider a planar shock wave incident at 0=t upon a half-space 0≥x . The fluid 

ahead of the shock front is weakly non-uniform: 
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we suppose that 1/ ρδρ , 1/ ppδ , 1/ avxδ  and 1/ av yδ are all much less than unity, where 

1a is the pre-shock speed of sound (indices 1 and 2 refer to pre- and post-shock quantities, 

respectively). In the zero-order approximation, neglecting the small non-uniformities, we 

have a planar shock wave propagating at constant velocity D into a uniform fluid. The 

mass velocity of the fluid behind the shock front with respect to the pre-shock fluid is 

denoted U; obviously, the density compression ratio in the shock wave is related to these 

velocities by 
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Below we assume ideal gas equation of state of the fluid with adiabatic exponent γ. The 

average post-shock values of density, pressure and sound speed are18 
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where 1/ 11 >= aDM  is the Mach number of the incident shock. We will use the 

reference frame in which the shocked fluid is at rest and 0=x  corresponds to the 

position of the planar shock front at 0=t . In this reference frame, the shock front 
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propagates at the velocity UD − with respect to the shocked fluid. The corresponding 

downstream Mach number is 
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 Our small-amplitude analysis is based on Fourier decomposition of all 

perturbations. We assume their dependence on the transverse coordinate y  in the form 

)exp(iky , where yykk λπ /2=≡ , see Fig. 1(a)-(c). Below k  without subscript always 

means yk , and the common factor )exp(iky  in perturbation variables is omitted. Let us 

introduce dimensionless first-order perturbation variables 
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Then the linearized ideal fluid equations are written as 
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 Excluding velocity perturbations from (6)-(9), we obtain the Klein-Gordon 

equation for the dimensionless pressure perturbation: 
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 Equations (6)-(10) must be supplemented by the boundary conditions at the 

surface of the piston driving the shock and at the shock front. For both the rigid piston 

and the free surface boundary conditions, the piston is formed by the fluid particles which 

initially were located at 0=x .  For the rigid piston the boundary condition at 0=x  is 

 0~ =xv ;          (11) 

for the free surface, it is 

 0~ =p .          (12) 

 If the shock wave is driven by a laser, as in laser-fusion-relevant conditions, then 

the boundary condition should be formulated at the time-dependent position of the 

ablation front, at tvx a= , where the ablation velocity 2/ ρmva &= , and m&  is the mass 

ablation rate. The corresponding Mach number is defined as 2/ avM aa = ; in most cases 

it is small, 1<<aM , because the plasma flow near the ablation front is subsonic, almost 

isobaric. Below we approximate the ablation front with a sharp boundary and use the 

boundary conditions due to Sanz and Piriz,19 formulated as in Eqs. (B7) and (9) of Ref. 

20: 
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Here, axδ is the ripple amplitude of the ablation front and 2/ ρρblDr =  is the blowoff-

plasma-to-ablation front density ratio, which also is typically small, 1<<Dr . In the limit 

0→aM , 0→Dr , 0/2 →Da rM  Eqs. (13) and (14) are reduced, respectively, to the free-
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surface boundary condition (12) and to the conventional relation between the normal 

velocity and displacement amplitudes at the free surface. 

 Finally, the “isolated shock” assumption means that the incident shock wave 

arrives to the 0=x  boundary from a half-space filled with a uniform fluid. A 

weak/contact discontinuity is instantly formed at the fluid particles, where the density 

modulation begins (which correspond to 0=x  in the shocked frame of reference). The 

perturbations of pressure p~ and the longitudinal velocity xv~  are continuous at 0=x , 

whereas the relative density perturbation ρ~  and the x-derivative of the lateral velocity, 

yv~ , undergo a discontinuity. The flow in the reflected sonic wave is governed by the 

same equations (6)-(9), which need to be solved additionally to the same equations 

describing the fluid between 0=x  and the shock front because of the discontinuity  

at 0=x . The boundary conditions at the planar front of the reflected sonic wave, at 

tax 2−= ,  are 

 0~~ =+ pvx ,     0~ =yv .        (15) 

 The boundary conditions at the shock front are perturbed Rankine-Hugoniot  

(RH) conditions derived in Ref. 18, §90. We write them down here for a particular case 

of density/entropy pre-shock modulation at constant pressure and zero velocity, 

characterized by the amplitude )(xkδρ , which is supposed to be relatively small at all x: 

1/|)(| 1 <<ρδρ xk . 

 0)1(~
2 =−− sy xkRMv δ ,       (16) 

 
( )

1
2

2
2
1

2
1 )1(~1~2

ρ
δρk

x RMp
MM

M
v −−=

+
− ,      (17) 



Phys. Plasmas 14, 072706 (2007)  10 

 
1

2
2

2
1

~1~
ρ

δρ
ρ kp

MM
=− ,        (18) 

 
( )

. ~
2

12

1
2

22 ρ
δργ

δ k
s RMp

M
x

dt
d

a
−=

+
−       (19) 

 Here, sxδ is the displacement amplitude of the shock front, R and 2M  are given 

by (2)-(4). In the reference frame where the shocked fluid is at rest, the boundary 

conditions (16)-(19) are imposed at taMtUDxs 22)( =−= , which corresponds to 

Dtx =  in the reference frame where the pre-shock fluid is at rest. The initial coordinate-

dependent pre-shock density modulation profile )(xkδρ  thereby translates into a time-

dependent term 1/)( ρδρ tk  in (17)-(19). Without this term, the boundary conditions (17)-

(19) are the same as used by all the researchers who studied propagation of rippled shock 

waves into a uniform ideal gas, starting from Refs. 21-22. If the pre-shock fluid also 

contains perturbation of pressure and/or velocity, as, for example, sonic waves (see 

Section III.D), the corresponding driving terms should be added to the right-hand sides of 

Eqs. (16)-(19).  

 Figure 1 demonstrates some examples of pre-shock density modulation profiles 

studied in this article. The simplest case is periodic lateral variation, independent from 

the longitudinal coordinate x, “stripes,” Fig. 1(a), )cos( yk y∝δρ , which corresponds to 

constant values of the density modulation terms in the right-hand sides of the boundary 

conditions (17)-(19). Periodicity in both lateral and longitudinal directions, a “quilt” of 

Fig. 1(b), )cos()cos( xkyk xy∝δρ , corresponds to single-mode oscillations of these terms 

in (17)-(19) with the frequency Dk x=ω . Figure 1(c) demonstrates the case where 

density modulation is periodic in the lateral direction but concentrated near the 0=x  



Phys. Plasmas 14, 072706 (2007)  11 

surface, )exp()cos( qxky −∝δρ ; the corresponding density modulation terms in Eqs. 

(17)-(19) decay with time as )exp( qDt− . Finally, Figure 1(d) shows a Gaussian density 

profile )exp( 22 yq−∝δρ , emulating a “thermal layer” or a “joint”. This localized pre-

shock density modulation is not periodic in the lateral direction; hence our single-mode 

equations (6)-(10), (13)-(19) are not directly applicable to study it. Nevertheless, having 

solved the perturbation problem for the simplest “stripes” case of Fig. 1(a), we can 

address the ”joint” case of Fig. 1(d) by using Fourier integral, in the same way as done in 

Refs. 23 for a shock wave driven by, or reflected from, a rigid piston with a Gaussian 

perturbation. 

 Figure 2 illustrates the perturbation problem formulation for the “stripes” case of 

Fig. 1(a) and the shock wave driven by a rigid piston. The shock front moves from the 

piston in the positive x direction. In our reference frame, where the piston is at rest, the 

unperturbed coordinate of the shock front is taMtUDxs 22)( =−= , see above. Deviation 

of the shock front from its original planar shape is caused by the interplay of the pre-

shock non-uniformity of density and the post-shock non-uniformity of all the fluid 

variables. Our goal is to determine the time dependence of the shock front displacement 

amplitude, )(txsδ , as well as the dynamics of the other perturbed variables in the shocked 

fluid.  

B. Elementary theory 

 The problem of shock interaction with pre-shock density perturbation has an 

elementary asymptotic solution for the simple case of an isolated shock wave coming 

from the unperturbed fluid. In this case, it is sufficient to calculate the amplitudes of the 
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perturbations which represent waves radiated downstream with respect to the shock front. 

The solution is obtained for the general case of a “quilt,” Fig. 1(b):  

 )cos(
1

xk xk
k ε

ρ
δρ

= ,        (20) 

where 1<<kε is a dimensionless constant. The “stripes” case of Fig. 1(a) is recovered in 

the limit 0→xk .  

 Assuming that the displacement of and the pressure perturbation at the shock front 

after some transient period oscillate harmonically at the frequency Dk x=ω , we can find 

the amplitudes of these oscillations. To do this, we decompose the perturbation behind 

the shock front into an outgoing sonic wave, a vortex wave and an entropy wave: 
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where the superscripts s, v and e refer to the sonic, vorticity and entropy perturbations, 
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 The sonic pressure perturbation )(~~ spp = satisfies the wave equation (10). We seek 

a solution of (10) that at taMx 22=  oscillates at the frequency ω in the form 
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where we have defined 
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 We see that the sonic perturbations downstream behave differently for the values 

of the parameter 0ζ  less and greater than unity. In the former case, the real part of the 

parameter η is nonzero, which implies that the corresponding pressure perturbations (22) 

either grow or decay exponentially with the distance from the shock front. Physically, it 

means that our combination of the frequency Dk x=ω  and the lateral wavenumber yk  

does not correspond to a running sonic wave. The perturbation amplitudes are thereby 

maintained finite at the shock front by the external driving force (pre-shock density 

modulation) and decay with the distance from the shock front. The corresponding 

condition on the ratio of longitudinal and lateral wavenumbers can be re-written as 
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 If the long-wavelength condition (26) is satisfied, and thereby 10 <ζ , then we are 

interested in the sonic mode that decays with the distance from the shock front, at 

−∞→x , that is, one corresponding to the solution (24) with the positive real part 
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 If (26) is not satisfied, 10 >ζ , then both solutions (24) are imaginary, and the 

pressure perturbations are running sonic waves. The outgoing wave corresponds to 
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 Sonic velocity perturbations )(~ s
xv  and )(~ s

yv are proportional to the same exponential 

factor (22), and their amplitudes are found from Eqs. (8), (9): 
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 Velocity perturbations in the vortex wave are arbitrary functions of x, satisfying 

the divergence-free condition 0~/~ )()( =+∂∂ v
y

v
x vkxv . At the shock front, taMx 22= , these 

functions should oscillate, which determines the coordinate dependence of these 

velocities. For the longitudinal velocity we have 
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The coordinate dependence is the same for the lateral velocity perturbation, whereas its 

amplitude )(
0

~ v
yv  is expressed via )(

0
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xv  with the aid of the divergence-free condition: 
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amplitudes, 0
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xv , and the dimensionless shock ripple amplitude sxkδ  are 

immediately determined from the RH boundary conditions (16), (17) and (19), where we 

have to substitute 2
202 1)/)(/(1 Midtdka −−= ζ .  

 For the long-wavelength “quilt” case, when (26) is satisfied, the asymptotic 

expression for the shock ripple amplitude is 
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where the constants are defined as  
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and the value of )arctan(... in the definition of φ is taken between 2/π and π if its 

argument is negative. 

 In particular, for the limiting case of “stripes” pre-shock density modulation, 

0=xk , hence 00 =ζ , and (32) reduces to 

 Qtxk ks εδ −≅)( .        (34) 

 Physical interpretation of (34) is simple. When a planar shock wave starts 

propagating along the “stripes” of the density profile shown in Fig. 1(a), initially it moves 

faster where the density is lower. It happens because the post-shock flow is subsonic, and 

the pressure there rapidly equilibrates, and the shock velocity scales as ρ/pD ∝ , 

where p is the post-shock pressure, and ρ is the pre-shock density. The initially planar 

shape of the shock front is distorted, becoming convex where the density is lower and 

concave where it is higher, see Fig. 2, and thereby equilibrating the pressure and reducing 

the difference in velocities. Eventually the shock approaches a constant velocity and a 

steady-state rippled shape, the asymptotic shock ripple amplitude being given by (37). 

Since 0>Q , the negative sign in (34) means that the shock is farther from the piston 

where the pre-shock density is initially lower. 
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 For the “quilts” with very long longitudinal wavelengths, yx kk << , 10 <<ζ , Eq. 

(32) demonstrates that the shock ripple amplitude adjusts to the slowly varying local 

value of the density modulation amplitude, ( )Dtk xk cosε . The coefficient of 

proportionality between the shock ripple amplitude and the pre-shock density modulation 

amplitude is close to the value Q− characteristic of the “stripes” case (the correction is of 

the order of 2
0ζ ). There is, however, a phase delay φ  between the pre-shock density 

modulation and the shock ripple, so that the former peaks not when the shock passes a 

valley of density modulation, but slightly later. With increased xk , the amplitude of 

oscillations monotonically increases compared to the “stripes” case, by a factor varying 

from 1 at 00 →ζ  to 1/1 2 >M at 10 =ζ . The phase shift φ also increases from 0 to 2/π  

at 10 =ζ . 

 For the short-wavelength “quilt,” when (26) is not satisfied and 10 >ζ , the 

asymptotic expression for the shock ripple amplitude is 
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In this regime, the phase shift between the density modulation and the shock ripple has a 

constant value of 2/π , so that the shock ripple amplitude peaks where the pre-shock 

density modulation has zero value. The asymptotic normalized amplitude (35) of the 

short-wave shock ripple oscillations decreases with increased longitudinal wavenumber 

as xy kk / , and the limit ∞→yx kk /  it can be presented as 
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 The above formulae have been obtained for the isolated shock boundary 

condition. However, for the “stripes” and long-wavelength “quilt” cases the outgoing 

sonic perturbations exponentially decay with the distance from the shock front. Therefore 

the perturbed shock front in these cases becomes decoupled from the piston at late time, 

∞→t . Consequently, the asymptotic formulae (32) and (34) are valid for arbitrary 

boundary conditions at the piston.  

 This is not the case for the short-wavelength regime, when the perturbed shock 

front radiates running sonic waves into the shocked fluid. If the incident shock wave is 

not isolated but driven by a piston, then these sonic waves, having been reflected from 

the piston, might reach the shock front again, adding new, Doppler-downshifted 

frequencies to its oscillations, and thereby making the asymptotic formulae (35) and (36) 

inapplicable. Extending the above derivation to cover this case is possible but probably 

too complicated. To study the short-wavelength case in the presence of a piston, we will 

apply more advanced theoretical methods described in Section III.  

 Here we limit ourselves to the simplest case of longitudinal density stratification 

that produces sonic waves propagating from the piston and back. Let us take the lateral 

wavenumber 0=k  and )(/ 01 xfερδρ = , where 10 <<ε  is the small dimensionless 

amplitude of the pre-shock longitudinal density modulation, and )(xf  is an arbitrary 

function describing its profile. Then Eq. (10) becomes a one-dimensional wave equation, 

whose general solution is a combination of running waves. We present it in the form 
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Here, pR  is the reflection coefficient for the sonic waves incident upon the piston; 

1=pR , 1− , and 0 for the rigid piston, free surface and isolated shock boundary 

conditions, (11), (12), and (15), respectively. Obviously, the solution (37) identically 

satisfies Eqs. (6)-(10) and the boundary conditions (11), (12) or (15) with arbitrary 

functions )(xF  and )(xG . These functions are easily determined if we substitute (37) 

into (17) and (18). The result is: 
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where 
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is the reflection coefficient for the sonic waves normally incident upon the shock front 

from downstream. Substituting the solution (38) into the boundary condition (18), one 

can easily determine the entropy perturbation profile )(xG . The infinite series (38) 

describes multiple reverberations of sonic waves between the shock front and the piston; 

the coefficient [ ]nMM )1/()1( 22 +−  accounts for the Doppler shift of the reverberating 

wave after n reflections from both surfaces. The reflection coefficient sR  varies between 

zero, for weak shock waves, and some peak value, which for 3/5≤γ  is achieved for 

strong shock waves. This peak value is small for typical gammas, varying from −0.0557 

for 3/5=γ  to −0.139 for 5/7=γ . This is why the series (38) rapidly converge for not-

too-small gammas. 
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 To give an example, consider a periodic pre-shock density stratification, 

xkxf xcos)( 0ε= . Substituting the solution (37) and (38) into (19), we find the time 

dependence of the shock displacement amplitude: 
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 (40)  

 For the isolated shock case 0=pR  and (40) is reduced to (36), as it should be. 

III. SOLUTION BY MEANS OF LAPLACE TRANSFORMS  

 Here we present general equations describing the temporal evolution of the 

perturbations in the space filled with the compressed fluid for both situations of long and 

short wavelength. This can be done, in principle, for arbitrary boundary conditions at the 

surface 0=x . The Laplace transform technique that we use was first developed and 

applied to the study of perturbed shock evolution by Zaidel in Ref. 22. Here, as had been 

done in Refs. 16,  the idea is to derive exact analytical expressions for the Laplace 

transform of the shock front pressure perturbations or of the shock front ripple. For the 

isolated shock case, which represents the simplest of the boundary conditions imposed 

downstream of the shock surface, we arrive to an exact closed form expression for the 

Laplace transform of the perturbations. Inverting this Laplace function, we can follow the 

evolution of almost any quantity of interest in the compressed fluid, always in linear 

theory. For all other cases, the advantage of using exact expressions for the Laplace 

transforms of the perturbation variables lies in the possibility of getting accurate 

information on the asymptotic behavior of the involved functions. The exact solutions 
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describing the shock distortion and mass flow in this Section I are obtained using either 

the exact inversion of the Laplace transform, for the isolated shock case, or the Taylor 

series expansion method (see Ref. 1 and references therein), for all other cases.  

A. Pre-shock density modulation periodic in the lateral direction – “stripes”  

 We start with the simplest of the boundary conditions, that of an isolated shock 

front. That is, we assume that there is no piston or surface reflecting the sound waves 

back to the shock front from behind. In general, the shock front will be rippled and the 

corrugations in its shape will induce a mass flow which is tangential to its surface. This 

lateral mass flow, in turn, creates a perturbed pressure gradient along it. As a 

consequence, the shock radiates sonic waves downstream, which are never reflected back 

to the shock front. This case represents a direct extension of the original Richtmyer’s 

problem (an incident planar shock interacts with an interfacial density non-uniformity15) 

for the case when the non-uniformity is distributed in the volume. In laser-fusion-related 

applications, the shock is typically driven by a not-too-distant piston. Our isolated shock 

case serves as a basis for further generalizations that take into account the boundary 

conditions at the piston, and represents a good approximation in the limit of weak 

incident shocks for arbitrary boundary conditions at the piston. 

 For the “stripes” case of Fig. 1(a), const/ 1 == kk ερδρ , where 1<<kε  is the 

small amplitude of the pre-shock density perturbation )exp(iky∝ . As in Ref. 16, we 

make a transformation of variables from x  and t  to r and θ , first introduced in the 

context of a similar problem by Zaidel in Ref. 22 and defined by: 

 ,cosh 2tkar =θ     kxr =θsinh .      (41)  
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The dimensionless shock front coordinate sθ  is expressed via the downstream shock 

Mach number: 2tanh Ms =θ . It is convenient to work with the Laplace transform with 

respect to the variable r. We define, for example, the Laplace transform of the shock 

pressure perturbation amplitude as: 

 ,)exp(),(~)(
~

),(
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0

drrsrpsPsP sss ∫
∞

−=≡ θθ       (42)  

where the variable sθ  means that the pressure is evaluated at the shock front position. 

After some algebra, which can be adapted to this problem following the procedure 

outlined in Ref. 16, see Appendix, we arrive to an exact solution for the Laplace 

transform of the  pressure perturbations at the shock front (assuming that there are no 

waves reflected back to the shock front, as also discussed in Ref. 24) in the “stripes” case: 

 
( )

( )11
2

10
2

200
2

10

1

~1
)(~

αα

αα

−−+

+−
=

ssss

ps
sP s

s .      (43)  

The coefficients 10α , 11α  and 20α depend on the fluid equation of state and the shock 

intensity. The coefficient 20α  here is different from that defined in Ref. 16, because of the 

different nature of the perturbations at the shock front. In Ref. 16, the shock ripple 

amplitude was given as an initial condition at += 0t , 0=x . Here, the shock front ripple 

is initially zero, and becomes nonzero later on, due to the density modulation in the pre-

shock fluid. These coefficients for an ideal gas equation of state (EOS) valid for a more 

general case of a “quilt” pre-shock density modulation are given by 
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and 0
~

sp  is the initial pressure perturbation at += 0t , at the surface 0=x : 
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 Here, the downstream Mach number 2M  and the shock compression ratio R are 

given by (4) and (2)-(3), respectively, and 0ζ  - by (25); in our “stripes” case 00 =ζ . 

 It is also easy to obtain the solution for the Laplace transform of the shock front 

ripple amplitude kδxs from the linearized RH equations using our previous results: 
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where the coefficient 30α  is defined as  
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 From Eqs. (43) and (46) we can obtain the temporal evolution of the 

corresponding perturbations. A conventional way of doing this22 is to expand the 

functions given by Eqs. (43) and (46) as a series in the variable  ( )s1sinhexp −− .  This 

decomposition for the Laplace transform, gives rise to an infinite series of Bessel 

functions in the time domain.16,17,24 However, we prefer to show here a different 

approach, that of explicitly inverting the Laplace functions )(
~

sPs and )(sXk sδ  in the 

complex plane. This method, albeit apparently more complicated, provides us with an 

integral representation of the front perturbations, which will be useful for many other 

purposes, as for example the estimation of the late-time asymptotic behavior. 

 From the theory of the Laplace transform, we can get the original functions in the 

time domain, after evaluating an integral of the form: 
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 ,)exp()(~),(~ dssrsPrp
ic

ic
ss ∫
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=θ        (48)  

where c is a real number to the right of all the singularities of sP~ . For ideal gases, as is 

the case in this work, the right-hand sides of Eqs. (43) and (46) do not have real or 

imaginary poles except 0=s . The other singularities are the branch points at is ±= , see 

Ref. 24. After closing the integration contour to the left, and defining a branch cut along 

the imaginary axis between the branch points is +=  and is −= , we get the following 

integral representation for the pressure perturbation amplitude at the shock as a function 

of time: 
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where the time variable sr  is found from (41) at taMx 22=  
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and the function )(zf p  in (49)  is given by 
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If we had imposed different boundary conditions behind the shock, other than the isolated 

shock condition studied in this Section, we would have obtained another auxiliary 

function )(zf p  inside the integral, in Eq. (49). For example, for rigid piston boundary 

conditions, or free surface conditions at 0=x , the function pf  would be the solution of 

an inhomogeneous functional equation, which has to be solved with techniques similar to 

those outlined in Ref. 16, see Appendix.  
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 The Laplace functions obtained before are a very powerful tool. Indeed, it is not 

difficult to arrive to the late time asymptotic for the pressure perturbations at the shock 

front. For (49) and (51) we obtain:24 
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where the quantity sσ is defined as 
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and the constant asymptotic pressure perturbation is 
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 Operating in a similar way with the Laplace function of the shock front ripples 

(46), we get the exact temporal evolution:  
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where )(trs  and )(zf p  are defined by (50) and (51), respectively. At ∞→t  we find from 

(55) that sxkδ  approaches the asymptotic value given by (34), as it should be. It is clear 

that the late time asymptotic of the shock ripple would also show oscillations with an 

amplitude that decays as 2/3−t , superimposed upon the constant value given by (34). As 

noted before, the asymptotic amplitude of the shock front corrugation has opposite sign 

with respect to that of the pressure disturbance at the same position on the shock surface.  

 Figure 3 shows the results of the solution for a strong shock with 101 =M  in an 

ideal gas with γ = 5/3 interacting with the “stripes” pre-shock density modulation. The 
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dimensionless shock ripple amplitude sxkδ  in Fig. 3 is normalized with respect to the 

dimensionless density variation amplitude, 1/ ρδρε kk = , so that its asymptotic value, 

according to (34), is equal to Q− . This value corresponds to the straight horizontal line. 

Its negative sign means that asymptotically the shock front is farther from the piston 

where the pre-shock density is initially lower, as shown in Fig. 2. Figure 3 shows the 

normalized dimensionless shock ripple amplitude vs. the normalized time kDt . It 

demonstrates that although the time history of the shock ripple amplitude depends on the 

boundary condition at the piston surface, its constant asymptotic value does not, as 

predicted by Eq. (34). This example also demonstrates that the shape of a strong shock 

wave propagating along the “stripes” reaches its asymptotic value after it travels slightly 

more than one lateral wavelength. For the weak shocks, one wavelength is enough. On 

the other hand, the oscillations of sxkδ around its asymptotic value (24) decay slowly, cf. 

(52), decreasing to the ~10% level as the strong shock propagates ~16 wavelengths. This 

slow decay of oscillations is probably a feature of the ideal-gas equation of state used 

here, cf. Ref. 25, and particularly Fig. 1 there. 

B. Pre-shock density modulation localized in the lateral direction – “joint” and 

“tube” 

 It is of practical interest to calculate the response of a shock-piston flow to a 

spatially localized, rather than periodic, pre-shock density perturbation. An important 

particular case is a density perturbation concentrated in a planar layer, perpendicular to 

the shock front, Fig. 1(d), which emulates a “joint” in a laser target8 or a “thermal layer” 

near a heated wall.10-14 Assuming a cylindrical, rather than planar, symmetry of the 

density perturbation shown in Fig. 1(d), we obtain the case of a “tube,” a density 
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perturbation concentrated in a cylinder perpendicular to the shock front, which emulates a 

fill tube in a laser target.9  

 To solve this problem, we decompose the pre-shock density perturbation into 

Fourier integral. For each of the Fourier modes, the problem is reduced to the “stripes” 

case of Fig. 1(a), which has already been solved above. We only need to substitute this 

solution into the Fourier integral and to perform the integration.  

 We start with a simpler “tube” case and limit ourselves to a Gaussian pre-shock 

density profile, which is decomposed into a Fourier integral as 
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 (56)  

where 1/q is the characteristic diameter of the pre-shock density perturbation and 1<<qε  

is its small dimensionless amplitude.  The expression under the integral over k is the 

Fourier amplitude 1/ ρδρ k  of the planar periodic density perturbation mode 

corresponding to the wavenumber k. For each of these modes, the solution is given by  

 )()(
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, kDttxk k
ks Φ=

ρ
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δ ,       (57) 

where  kDt=τ  is the dimensionless time for the k-th mode, )(τΦ  is a known function, 

the same for all modes (its typical graphs are shown in Fig. 3). Since the shock front is 

initially planar, 0)0( =Φ ; the limit of this function at large argument is given by (34). 

Therefore, at any time the shape of the perturbed shock front is given by 
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 For large t, the argument of Φ in (58) is large everywhere except at 0=k , and we 

can approximate this function in the Fourier integral by Q− , its asymptotic value at large 

argument, see (34). Then, performing integration over k, we find the time-independent 

asymptotic shape of the shock front for the “tube” case: 
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where )(0 zI  is the modified Bessel function. The asymptotic shock displacement profile 

near the axis of the “tube” and far from it therefore is 
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 The asymptotic curvature of the shock front at the axis is 
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 Figures 4(a) and 4(b) demonstrate how these asymptotic values, (60) and (61), 

respectively, are approached at 0=r . The dimensionless shock ripple amplitude 

),0( trxq s =δ  and dimensionless curvature qR/1  are normalized with respect to qε , and 

plotted versus normalized time qDt .  We see that the distortion of the shock front caused 

by the “tube” kind of the pre-shock density perturbation always remains finite, localized 

in the vicinity of the “tube,” at the distance of the order of its diameter, in qualitative 

agreement with the numerical results of Ref. 9.  

 For the planar, rather than cylindrical, symmetry of the localized pre-shock 

density perturbation, the “joint” case, the Fourier integral is written as 
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where, as above, 1/q is the characteristic width of the pre-shock density perturbation and 

1<<qε  is its small dimensionless amplitude.  Therefore the shape of the shock front is 

given by 
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 The asymptotic estimate for this “joint” case cannot be made similarly to (58) 

because Fourier integral (63) diverges at its lower limit 0=k  if )(kDtΦ  is simply 

replaced by its constant asymptotic value Q− . The reason for this divergence is simple. 

As seen from (34) and (57), the asymptotic shock displacement amplitude is large for 

long wavelengths (small k). In the above “tube” case, the long-wavelength modes occupy 

a small portion of the phase space, which is why their contribution to the Fourier integral 

is small. In contrast with this, for a “joint’ case the long-wavelength modes make the 

dominant contribution to the Fourier integral (63), making it diverge at ∞→t . A simple 

calculation yields the time-dependent asymptotic shape of the shock front for the “joint” 

case: 
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where );,;,(22 zdcbaF  is the generalized hypergeometric function,  
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and ...5772.0E =γ  is the Euler’s constant. 
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 The asymptotic shock displacement profile near the symmetry plane of the “joint” 

and far from it therefore is 
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 The asymptotic curvature of the shock front at the “joint” symmetry plane is 
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 Equations (66) and (67) predict that the shock perturbation exhibits two spatial 

scales, in qualitative agreement with the simulation results11 and the experimental 

findings.12, 13 In the vicinity of the “joint” plane its shape retains the characteristic length 

scale q/1 ; in particular, the radius of its curvature approaches a steady-state value of this 

order, which is independent from the boundary condition at the piston, similarly to the  

“tube” case. On the other hand, Eq. (66) predicts unlimited, albeit slow, logarithmic 

growth of the shock displacement amplitude. It contains the term ∆ that depends on the 

time history of the shock displacement amplitude, and therefore, depends on the 

boundary conditions at the piston. Note that the asymptotic shape of the shock profile 

(66) at late times, 1>>qDt , at large distances from the “joint”, 1|| >>qy , is self-similar, 

depending on y and t only via the dimensionless combination ||/ yDt  and independent of 

q. Figures 5(a), (b) demonstrate that this is indeed the case. The perturbed shock 

dynamics is different for the cases of rigid piston (a) and free surface (b) because the 

parameter ∆ equals -0.757 in the former case and 1.71 in the latter. The growth rates, 

however, approach the same limit for both cases. 
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C. Double-periodic pre-shock density modulation – “quilt” 

 Now consider the “quilt” case of double-periodic pre-shock density/entropy 

perturbation, Fig. 1(b), for the isolated shock case. By proceeding much in the same way 

as in Section III.A, we get the following exact, closed form expressions for the Laplace 

transforms. Generalization of (43) and (46) for 00 >ζ gives, respectively, 
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 (69)  

 The time evolution of the pressure and shock ripple perturbations can also be 

easily obtained, as a function of the shock intensity, fluid compressibility and the 

parameter 0ζ . In both Eqs. (68)  and (69) we recognize the denominator 2
0

2 ζ+s , whose 

poles at 0ζis ±=  give rise to oscillations of constant amplitude in the domain of the 

variable rs, the frequency of which is 0ζ . This oscillation is convoluted with another 

oscillating function. We get, for example, for the shock front ripple: 
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where the auxiliary function ),( zrg s inside the integral (70) and the coefficient ξ are 

given by: 
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and )(zf p  is defined by (51). To get an approximate analytical formula valid when the 

shock is far enough from the surface 0=x , we must distinguish the two regimes: long-

wavelength 10 <ζ  and short-wavelength 10 >ζ , as defined in Section II. 

 For the long-wavelength regime, the pressure perturbation at late time is given by 

the asymptotic formula 

 ( ) ( )DtkbDtkbtp xxs sincos)(~
0201 +≅ ,      (73) 

where the coefficients 01b  and 02b  are given by: 

 

b01 = α20(α10 ζ 0
2 −α11)

ζ 0
2(1−ζ 0

2) + (α10 ζ 0
2 −α11)

2 ,

b02 =
α20ζ 0 1−ζ 0

2

ζ 0
2(1−ζ 0

2) + (α10 ζ 0
2 −α11)

2 .

      (74) 

For the shock front ripple amplitude we reproduce the asymptotic formula (32). 

Increasing the longitudinal wavenumber further, we enter the short-wavelength 

regime, where 10 >ζ . The asymptotic formula for the shock pressure perturbation 

amplitude becomes: 
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with 
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The asymptotic formula for the shock ripple amplitude is (35). 

 The long-wavelength condition (26) for the same parameters as in Fig. 3, 

101 =M , γ = 5/3, requires 5049.0/ <yx kk . Choosing the wavelength ratio in this range, 

5/1/ =yx kk , we expect the asymptotic expression (32) to be valid. Figure 6 
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demonstrates that this is indeed the case, for the rigid piston and free surface boundary 

conditions as well as for the isolated shock. As in Fig. 3, the time history of the shock 

ripple amplitude depends on the boundary condition at the piston, whereas its asymptotic 

behavior does not. 

 Figure 7(a) illustrates the short-wavelength “quilt” pre-shock density modulation 

with 1/ =yx kk , the other parameters being the same as above, for isolated shock case. 

We see that the asymptotic amplitude and phase predicted by (35) are achieved very 

rapidly.  

 This asymptotic expression, however, is not applicable in the presence of a piston 

driving the shock wave into the short-wavelength “quilt”. In this case, not covered by the 

elementary theory of Section II.B, sonic waves reflected from the piston can reach the 

shock wave and affect its behavior. The appropriate asymptotic formulae can still be 

obtained using the Laplace transform technique. Here we present the results, whose 

derivation is outlined in the Appendix. 

 For the short wavelength regime with sufficiently large  0ζ the sonic waves 

radiated by the shock at the normalized frequency 0ζ  given by (25) that corresponds to 

the physical frequency Dk x=ω  can be reflected from the piston surface and catch the 

shock front from behind. This will occur if the x-velocity of the reflected sonic wave is 

greater than the shock speed in the reference frame of the shocked fluid. That is, the angle 

ϕ  that the sonic ray forms with the x-axis (normal to the piston surface) must satisfy 

2cos M>ϕ , see Ref. 18. This condition can be expressed as 

 2
2

2
2

0 1
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s −
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=> θζ .       (77) 
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Let us define the auxiliary quantity 0σ  by 00 coshσζ = . Equation (77) is obviously 

equivalent to sθσ 20 > , which is also seen to be the requirement for a “successful 

reflection at the piston boundary”. When this condition is met, the shock starts to oscillate 

with another normalized frequency 2ζ  given by:  

( )sθσζ 2cosh 02 −= .        (78) 

The higher-order terms appear as follows. If the sonic waves emitted at the 

frequency 2ζ  could reach the shock surface from behind, after being reflected at the 

piston, another mode (with a lower frequency 4ζ ) would be excited at the shock front. For 

this to happen, a requirement similar to Eq. (77) has to be satisfied, which is obtained by 

replacing sθ2  with sθ4 , sθ6 , …, etc., in the right-hand side of Eq. (77). The 

corresponding normalized oscillation frequencies therefore are 

( )sn nθσζ 2cosh 02 −=  .       (79)  

The number of additional oscillatory modes is thereby finite and equal to 
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where [z] denotes the largest integer z≤ .    

 The reason for the finitude of the spectrum lies in the fact that, once the sonic 

wave with frequency mζ  arrives back to the shock, its reflected wave will be Doppler 

downshifted in the reference frame of the shocked fluid (with a normalized frequency 

mm ζζ <+1 ). Then, after a finite number of reflections, the frequency of the last excited 

mode would be eventually so low that the x-velocity of the associated sonic ray is less 
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than the shock speed with respect to the shocked fluid, 22Ma , and then the process of 

“successful reflection” terminates. This phenomenon is totally equivalent to the problem 

of spontaneous acoustic emission (SAE) for a shock moving into a certain non-ideal gas, 

in the presence of a reflecting boundary from behind, as discussed in Ref. 24. The 

difference with the problem being studied here is that in our case, the shock is forced to 

oscillate because of the pre-shock density modulation, so that the oscillations take place 

for arbitrary EOS, including ideal gas. In Ref. 24, on the contrary, the initial oscillation 

was provided by the SAE phenomenon, due to the non-ideal EOS of the fluid into which 

the shock was moving. The interesting point to note is that, once we make the shock to 

oscillate with any initial frequency (asymptotically in time, independently of the reason 

of that oscillation), all the other additional modes that are also seen to be excited at its 

surface, are just due to this process of successful reflection downstream, and their origin 

is therefore essentially kinematic.  

The asymptotic pressure perturbation and shock front ripple amplitudes are 

expressed as 
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Here pR , as above, is the reflection coefficient for the sonic waves incident upon the 

piston. As in (38) and (40), this factor accounts for the phase and amplitude change of the 

sonic wave at reflection from the piston. The coefficient 0e is given by (76); the other 

coefficients are 



Phys. Plasmas 14, 072706 (2007)  35 

 

;2

, 
1

1

1

12
 

; 
1

12
 

1

1 11
2
210

2
22

11
2
210

2
22

11
2
210

2
22

2
220

2

11
2
210

2
22

2
220

2

Nn

e
e

e
e

n

m mmm

mmm

nnn

nn
n

≤≤

+−−

−+−

+−−

−
=

+−−

−
=

∏
−

= αζαζζ

αζαζζ

αζαζζ

ζζ

αζαζζ

ζζ

  (83) 

 
;1    , 

14

1

; 
14

1

2

2

2
22

2

0

30

0

0

2
22

0

Nn
e

MM
j

e

MM
j

n

n
n ≤≤

−

+
=

+
−

+
=

ζ
γ

ζ
α

ζ
γ

     (84) 

The value of 0j  given by (84) is, of course, the same as the coefficient at )sin( Dtk x  in 

(35). For the isolated shock case 0→pR  and (81) and (82) are reduced to (75) and (35), 

respectively. Otherwise the terms in the sums (81), (82) decrease with increased n very 

rapidly because the reflection coefficient of the sonic waves from the shock front is lower 

for oblique incidence than for normal incidence (39), and for each higher-order wave 

returning to the shock front from the piston the angle of incidence is more oblique than 

for the previous one. Therefore in most cases the two first terms in the sums (81), (82) 

provide sufficient accuracy. In the limit ∞→yx kk / , ∞→0ζ  we have 

n
n MM )]1/()1[(/ 2202 +−→ζζ , and (82) is reduced to (40), as it should be. 

 When a piston driving the shock wave is present, the lower-frequency oscillations 

superimposed upon the oscillations at the driving frequency Dk x=ω  are clearly seen in 

Fig. 7(b). The asymptotic formula (82) is shown to provide good accuracy with just one 

extra term, corresponding to 1=n , retained.
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D. Pre-shock standing sonic wave 

 All the above results refer to the density modulation ahead of the shock, which, at 

constant pre-shock pressure, corresponds to an “entropy wave” that is stationary with 

respect to the resting fluid ahead of the incident shock front. In general, a small 

perturbation of a uniform resting fluid is decomposed into a density/entropy perturbation, 

a vorticity perturbation and a sound wave.18 Our theory can be easily modified for the 

case when the perturbation ahead of the shock front is either a standing sonic wave or a 

periodic vortex system. We consider here the former case as an example. 

 We limit ourselves to the situation when the wave vectors in the two 

superimposed running sonic waves that make a standing wave are parallel to the shock 

front, in the y direction. (This is because there is no reflection of the incident sonic waves 

from a shock front, so we cannot form any other standing waves.) Using the above terms, 

the perturbation pattern at any instant looks like “stripes”, Fig. 1(a). The areas of high and 

low density, however, change places periodically,  which is why the shock front feels this 

upstream perturbation as a “quilt”, Fig. 1(b), with pre-shock density and other variables 

oscillating at 0=y . For a given lateral wavenumber k , the frequency of these pre-shock 

oscillations is 11 ka=ω , where 1a  is the pre-shock speed of sound, see Fig. 2. The 

perturbations coming to the shock front at the time t are 
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where the dimensionless amplitude of the sonic wave is 1<<kε . The density 

perturbation (85) is similar to that in a “quilt,” Fig. 1(b), with the effective longitudinal 

wavenumber   



Phys. Plasmas 14, 072706 (2007)  37 

 
1

, M

k
k y

effx = .         (86) 

The perturbations of the pressure and lateral velocity are not present in the “quilt.” To 

account for these, the boundary conditions (16)-(19) need to be modified appropriately. 

 Obviously, for a sufficiently strong shock wave, the ratio yeffx kk /,  becomes small 

enough to satisfy (26), and we approach the long-wavelength “quilt” case. Physically, the 

post-shock speed of sound is proportional to the shock velocity, and the pre-shock 

oscillation frequency 11 ka=ω  for sufficiently strong shocks is much smaller than the 

corresponding post-shock frequency 2ka=ω . The resulting requirement on the shock 

strength is 

 

2/12/1

1 1
1
1












+








−
+

>
γ
γ

M .       (87) 

 When the shock wave is sufficiently strong the similarity between the cases of the 

upstream standing sonic wave and the “quilt” increases approaching equivalence. This is 

because both velocity and pressure behind the strong shock wave are so much higher than 

their pre-shock values, that the pre-shock perturbations of these variables can be 

neglected. On the other hand, density variation in the shock wave is limited, hence the 

perturbed strong shock wave mostly reacts to the pre-shock density perturbations.  

 Figure 8 shows the time histories of shock ripple amplitude for 3/5=γ  and two 

Mach numbers, 101 =M  and 25. For γ = 5/3 Eq. (87) gives 732.131 =>M , hence both 

of these cases satisfy the long-wavelength condition. The agreement with (32) is good, as 

it should be. 
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E. Richtmyer-Meshkov-like instability and lateral mass redistribution  

1. RM-type perturbation growth at the inner interface and free surface 

 It has been demonstrated in Ref. 1 that a fast application of an external pressure to 

a rippled surface produces a fingering instability similar to the classical RM instability, 

RM-type instability. We show here that such instability develops even if the loaded 

surface or interface is initially planar. If the half-space behind the surface 0=x  contains 

pre-shock non-uniformities, then the perturbations needed to drive the instability are 

instantly deposited at this surface, when a planar shock wave either reaches this surface 

(isolated shock case) or is launched from it (all other cases involving a non-rigid piston) 

and brought to the surface by sonic waves. 

 After += 0t , the free surface 0=x  becomes a vortex sheet, which exhibits a 

linear ripple growth as in the Richtmyer-Meshkov instability.1 In the case of isolated 

shock wave, this surface becomes a small-amplitude weak/contact discontinuity 

separating two regions of fluid: to the left, 0<x , we would have irrotational velocity 

field generated by the left-facing sonic waves radiated by the rippled shock front since 

+= 0t . To the right, at taMx 220 <<  in the frame of reference of the shocked mass, the 

fluid is filled with sonic waves plus vorticity and entropy perturbations generated at the 

shock front.18 We show here that this interface exhibits a RM-type linear growth, too. 

 The Laplace transform technique makes it possible to find the asymptotic 

behavior of the 0=x  surface for these cases. For the “stripes” and long-wavelength 

“quilt” cases of pre-shock density modulation, the velocity perturbation amplitude at the 

surface 0=x  tends to a constant asymptotic value 

 vxi
∞ = ˜ v xi

0+ − coshθs + α1(θs)[ ] ˜ P s(θs) −
α20

sinh2(θs) +ζ 0
2 ,    (88) 
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where the velocity perturbation at += 0t  is given by 2/)1(~
2

0 −−=+ RMvxi , see (17). For 

the isolated shock case the function )(~ θsP  defined by (42) is explicitly determined by 

(43) or (68). The procedure of calculating its value for the free surface case is outlined in 

the Appendix, where the function )(1 sθα is defined by Eq. (A3).  

 For the short-wavelength “quilt”, sonic waves radiated downstream by the rippled 

shock front reach the 0=x  surface and make it oscillate. The number of the oscillating 

modes is 
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cf. (80). This number equals either N given by (80) or 1+N , because a sonic wave 

radiated by the shock front that reaches the piston is not necessarily able to catch up the 

shock front after its reflection. The dimensionless frequencies of these modes are 

 ( )sn n θσζ )12(cosh 012 −−=− ,   1=n , 2, …, N ′ ,    (90) 

cf. (79). For the isolated shock case, only the 1=n  mode can be excited at the 0=x  

surface because there is no reflection of sound from this surface back to the shock. 

 The asymptotic expression for the velocity perturbation is 
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where ∞
xiv  is given by (88) and the oscillation amplitudes are 
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 For the isolated shock case, N ′  in (91) is replaced by the smaller of N ′  and 1. 

We see that the ripples at the free surface grow because of the RM-type instability 

developing on that surface. Superimposed on this linear growth are the oscillations 

induced by the waves radiated by the shock surface, which is forced to beat with a 

rhythm imposed by the longitudinal density modulation ahead of it. Similar arguments 

would apply to the case of a rigid boundary at 0=x . The difference is that for a rigid 

piston it is the sonic pressure and tangential velocity perturbations at 0=x  which would 

show the oscillations with the normalized frequency 1ζ .  In the limit ∞→yx kk / , 

∞→0ζ , 2/1
22012 )]1/()1[(/ −

− +−→ n
n MMζζ , and the sum over n in (91) is reduced to 

the solution (37) and (38). 

 Figure 9 is plotted for an isolated shock wave interacting with a “quilt” pre-shock 

density modulation, Fig. 1(b). In the long-wavelength case, when (26) is satisfied, the 

periodic shock oscillations do not generate running waves that can reach the 0=x  

surface. Therefore the longitudinal velocity perturbation amplitude at 0=x  approaches 

the constant asymptotic value given by Eq. (88), similarly to all other examples of the 

RM-type instability.1, 16 It is illustrated by Fig. 9(a) plotted for 5/1/ =yx kk , 3/5=γ , 

101 =M ; the x-velocity perturbation amplitude pV  is normalized with respect to Dkε . 

The constant asymptotic value of pV  means that the initially planar contact interface 
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formed by the fluid particles initially located at 0=x  becomes rippled, with the ripple 

amplitude growing linearly with time, which is typical for the RM-type instabilities.1 

Figure 9(b) demonstrates a similar calculation for a short-wavelength “quilt,” 1/ =yx kk . 

In this case, the oscillating shock front radiates sonic waves that reach the 0=x  surface. 

As a result, its velocity pV  oscillates around the constant average value given by the same 

Eq. (88), rapidly approaching the asymptotic harmonic oscillation predicted by Eq. (91). 

In this case, too, the ripple amplitudes of the contact interface grow linearly with time, on 

the average, with a non-decaying oscillation superimposed upon the linear growth. This 

growth, however, is not easy to detect in either case, even in a simulation, unless it is 

done with a Lagrangian code that tracks individual fluid particles. Indeed, the 

unperturbed density is equal on both sides of the rippled interface, and therefore its 

growth is not captured by any diagnostic that tracks lateral mass redistribution, whether it 

is numerical or experimental, like face-on radiography. 

2. Lateral mass redistribution 

 The lateral mass redistribution is a very important manifestation of all the 

interfacial instabilities, including RT, classical RM, ablative RM and other RM-type 

instabilities, which allows us to directly observe their development in laser targets with 

the aid of face-on x-ray radiography, as in Refs. 26-28. Our next example of the RM-type 

growth that involves the lateral mass redistribution refers to the “stripes” case of pre-

shock density modulation, Fig. 1(a), with the free surface (constant pressure) boundary 

condition at the piston. The free surface is initially planar. However, the ripples rapidly 

develop at the surface because the shock wave driven by a constant pressure propagates 

faster into the lighter fluid, and the piston follows it. Then these ripples continue their 
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linear growth, similarly to all the RM-type situations.1 Figure 10(a) shows the time 

history of the normalized ripple amplitude, pxkδ and of its velocity normalized as in Fig. 

9, ( ) ( )kDtdxkdV pp /δ= . We see a good example of a RM-type behavior – linear 

asymptotic growth, constant velocity given by (88). Just as above, the growth is in the 

negative direction because the piston lags behind where the density is higher, 0>kδρ , see 

Fig. 2. 

 For our piston problem, the areal mass modulation amplitude mδ  can be 

expressed as 
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where the time-averaged value of the pre-shock density modulation at the shock front is 

defined as   

 ∫ ′′==
t

tdtDx
t

t
0

11 )(
1

)( δρδρ ;      (94) 

e. g., for the “stripes” case constk == ερδρ 11 / , whereas for the “quilt” case (20) 

( ) ( )DtkDtk xxk /sin/ 11 ερδρ = , cf. Refs. 1, 27, 28. The three contributions to mδ  in the 

square brackets come from the ripples at the piston surface and the shock front and from 

the density modulation left between the shock and the piston, respectively. The 

expression (93) accounts only for the time-dependent areal mass modulation resulting 

from the lateral mass redistribution, it does not include the constant initial mass 

modulation amplitude, which for the “stripes” case of Fig. 1(a) equals Lkδρ , where L is 

the target thickness. According to (93), the negative growth of pxδ  shown in Fig. 9(a) 
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adds a positive contribution to mδ , as it should be – the bubble deepens where the 

density was initially low, thereby increasing the initial density contrast. In all situations 

of RM and RM-type growth, this contribution to mδ  from the unstable surface/interface 

rapidly becomes dominant, cf. Figures 1 of Refs. 27 and 28. Figure 10(b), however, 

shows that this is not the case here: at late time, we see a constant, finite difference 

between mdtd δ)/(   ( mδ  is normalized with respect to πλρ 2/2 , kDt  is the normalized 

time) and the constant asymptotic contribution from the RM-type unstable piston surface, 

pV− . This difference cannot come from the shock front contribution, because the shock 

front displacement amplitude oscillates around a constant asymptotic value, as shown in 

Fig. 3, hence its time derivative is zero on the average. Therefore it is due to a lateral 

mass redistribution in the volume of the shocked target. Since the difference is negative, 

the perturbed lateral flow moves the mass from where the density was initially higher to 

where it was initially lower. 

 To elucidate the cause of this redistribution, consider the rigid piston boundary 

condition that eliminates any contribution of the perturbed surface to the areal mass 

modulation amplitude mδ . Figure 11(a) shows the time history of mδ  for this case. The 

longer the shock wave propagates through the “stripes” density perturbation field, the 

more the initial amplitude Lkδρ  is reduced by the post-shock flow. Figure 11(b) displays 

the profiles of relative density perturbation amplitude, 2/~ ρδρρ =  , normalized with 

respect to kε , at five instants of time. On the average, ρ~  remains below unity (its pre-

shock value shown by the horizontal dotted line), so the corresponding contribution to the 

right-hand side of (93) is negative. One can say that a shock wave helps the shocked fluid 

to reach greater uniformity by reducing the pre-shock density contrast in it; the shock 
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brings more pressure where the density is higher, and these areas expand. Note, however, 

that in the immediate vicinity of the shock front ρ~  exceeds unity, and the direction of the 

lateral mass flow is different there. Indeed, the shock front is convex where the density is 

initially lower and concave where it is initially higher. It implies that the mass near the 

shock front flows laterally to where the density was initially higher, thereby adding a 

positive contribution to mδ . The flow in the opposite direction dominates in the vicinity 

of the piston, and on balance the contribution reducing the post-shock density non-

uniformity prevails. 

 What if the shock wave is driven by a laser, with an ablation front serving as a 

piston? In the case of a uniform target with front surface ripples, its instant shock loading 

produces the so-called ablative RM instability:29 Instead of a linear growth similar to that 

illustrated by Fig. 10(a), both the ablation front displacement and areal mass modulation 

amplitudes exhibits slowly decaying oscillations. Such oscillations of mδ have recently 

been observed experimentally.26,27,30 Linear RM-type perturbation growth at the ablation 

front is suppressed by the “rocket effect”19 that is incorporated in the boundary conditions 

(13), (14) – for details, see Refs. 1, 27, 29. For our case of the pre-shock “stripes” density 

perturbation, Fig. 1(a), the time histories of the normalized displacement amplitude of the 

ablation front, axkδ , and of the areal mass modulation amplitude, mδ , are shown in 

Fig.12 plotted for the parameters of the ablation front 0625.0=Dr , 05.0=aM , which 

roughly correspond to a planar solid DT target with =λ 24 µm ripples on its front  

surface irradiated with a 0.35 µm laser radiation at 3×1013 W/cm2, see Ref. 31. 

 We see in Fig. 12(a) that the slowly decaying oscillations of the ablation front 

occur around a nonzero average. This happens because at early time the ablation front, 
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following the shock front, makes a dent in the target where its density was initially lower. 

Later, the dent remains, since the plasma in its vicinity stays non-uniform. The 

contribution of the rippled ablation front to the mass modulation amplitude mδ  does not 

decay, nor is dominant, as in the case of a rippled uniform target.1, 26, 27, 29 Rather, Fig. 

12(b) demonstrates that the mass flow in the volume reducing the density contrast, 

dominates here, similarly to the case of a rigid piston, cf. Fig. 11(a). 

3. Pre-shock density modulation localized near the shocked surface  

 One of the issues that could be addressed studying shock propagation in a fluid 

with weakly modulated density refers to numerical simulations of the RM-type unstable 

flows. In laser fusion studies, one often has to model a very small roughness of the 

irradiated surface. It is not easy to resolve very small-amplitude ripples on a numerical 

grid. A typical remedy for it is to consider a planar surface and introduce a density 

perturbation in the volume. For example, a sine-wave ripple of amplitude 0xδ  and lateral 

wavenumber k  on the front surface of the target whose density is 1ρ  can be 

approximated by a density profile at 0≥x : 

 )cos()(1
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kyxfx
yx

δ
ρ

ρ
+= ,      (95) 

where )(xf  is a dimensional function ( ][ f =cm-1) localized near the surface, which 

satisfies the normalization condition 

 ∫
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This condition ensures that the initial areal mass modulation amplitude in this flat target 

with inner density modulation equals 01 xδρ , the same as in a uniform target of density 1ρ  

with a single-mode surface ripple whose amplitude is 0xδ . 

 For example, we can consider profiles peaked at the surface ( 0=n ) or near it 

( 0>n ) and exponentially decaying far from it 

 )exp()(
!

)( qxqx
n
q

xf n −= ,     0≥n ,       (97) 

or Bessel-function profiles, exhibiting a slow oscillatory decay with increased x: 

 )()( 0 qxqJxf = .        (98) 

 All the profiles (97) and (98) satisfy the normalization condition (96). Increasing 

the parameter q, one can make these perturbations more and more localized near the front 

surface, which is compatible with relative smallness of density perturbation provided that 

the equivalent ripple amplitude 0xδ  is sufficiently low. Of course, the problem is 

determined by the dimensionless ratio kq / . Apparently, in the limit ∞→kq / , the 

density perturbation becomes localized near the surface on the length scale much less 

than k/2πλ = , the wavelength of the transverse ripple. The questions are whether in this 

limit the internal density modulation is equivalent to the surface ripple as far as the later-

time perturbation dynamics is concerned, and if it is then how large should the ratio kq /  

be so that we can make use of this equivalence in the simulations. 

 Instantly loading a free rippled surface with a constant pressure, we generate a 

RM-type instability at this surface. A similar effect arises from loading a planar surface 

with a single-mode density perturbation near the loaded surface. Let us compare the 

results. Figure 13 shows the normalized growth rate of the areal mass variation amplitude 
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(in units of 01 xδρ ) and its time derivative vs. normalized time, kDt , for the 0=n , purely 

exponential (a), and Bessel-function (b)  profiles of the areal density perturbation near the 

surface. For both cases, the ratio kq /  varies in the range from 1 to 4, 3/5=γ , 101 =M .  

 We see that the convergence to the surface ripple case with increasing kq / is 

faster for the Bessel-function profile compared to the exponential. This is because the 

former concentrates a larger part of the (positive) density perturbation in the vicinity of 

the surface compared to the latter. At larger distance the density perturbation becomes 

negative, but it turns out to have less effect on the surface RM-type growth. 

IV. NUMERICAL SIMULATIONS  

 The theoretical results presented above are exact and therefore do not require 

numerical verification. Rather, as in our earlier work,4, 31, 32 they can be helpful in testing 

the accuracy of the codes. 

 Our simulations were performed in two dimensions using the Eulerian FAST2D 

hydrocode developed at the Naval Research Laboratory33 (more details and further 

references are given in Ref. 31). Two profiles of laterally periodic pre-shock density 

modulation were simulated: the “stripes” case of Fig. 1(a), and the density modulation 

(97) localized near the target surface. All our simulations were done for a strong shock 

wave 101 =M , driven into an ideal gas 3/5=γ  by a rigid piston, whose velocity was 

6104 ×=pV  cm/s. The lateral perturbation wavelength in all cases was taken 30=λ  µm. 

Dimensions of the simulation box were one full wavelength 30=λ  µm in the lateral 

)( y direction and 200 µm in the longitudinal )(x  direction. The rectangular grid was 

fixed in space and time; its cell size was 0.5 µm in the longitudinal direction and 0.9375 



Phys. Plasmas 14, 072706 (2007)  48 

µm in the lateral direction, which corresponds to 32 zones per wavelength (about as much 

or more than one can afford in multi-mode inertial confinement fusion (ICF) relevant 

simulations34). 

 Figure 14 compares numerical simulation results and the theory for the “stripes” 

case. The relative density modulation amplitude 1/ ρδρε =  is varied between 4105 −×  

and 2105 −× . The areal mass modulation amplitude is normalized with respect to its initial 

value, δρδ Lm =0 , where 200=L  µm. The theoretical line in Fig. 14 is basically the 

same as in Fig. 11(a), differing only in normalization of δm (vertical axis) and in time 

units (horizontal axis). Figure 14(a) presents the results obtained with a time step initially 

chosen 1.00 =∆t  ps. This appears to be a reasonable choice, given that 

4
0 103.1/ −×=∆ λtVp . In the simulations of similar problems done for the ICF-relevant 

conditions,2, 3, 5 where the laser intensity increases gradually, the code automatically 

adjusts its time step to fit the problem. In our present problem, the shock wave of full 

strength is generated instantly. The code was not originally written for introducing instant 

shocks, so that the initial step needs to be prescribed. We see, however, that our 

simulation results deviate from the exact theoretical results from the very beginning. The 

deviation is not healed with the passage of time, as the shock wave propagates in the 

longitudinal direction for up to 7 lateral wavelengths. Moreover, the deviation between 

the exact solution and the numerical results grows linearly with time. Figure 14(a) 

illustrates that this deviation cannot be attributed to nonlinear effects due to finite 

amplitude of the pre-shock density modulation: reduction of the parameter ε by two 

orders of magnitude does not bring the numerical result closer to the theory. 
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 What matters here is a proper choice of the initial time step. Taking the initial 

time step 10 =∆t  fs and allowing it to increase no more than by 5% per time step, we 

obtain the results shown in Fig. 14(b). This choice is seen to make the agreement with the 

theory much better; in particular, the average growth rate of mδ  is modeled very 

accurately for both values of the initial density modulation amplitude, 3105.2 −×  and 

210− , even though the time step after the first 1 ns becomes the same as in the simulations 

illustrated by Fig. 14(a). 

 Figure 15 shows a similar comparison for the localized density modulation (95) 

and (97). Here, we have chosen 30/(2π== kq  µm) and did the simulations for the 

parameter n in (97) varied from 0 to 4. For all the profiles, the same value of 1.00 =xδ  

µm in (95) was chosen, corresponding to the initial value of mass modulation amplitude 

010 xm δρδ = ; areal mass modulation amplitudes are shown normalized with respect to 

this value. The maximum value of the relative density modulation amplitude in the 

profile (97) equals ( ) !//2 0 nenx nn −×λπδ , and for n increased from 0 to 4 it decreases 

from 2102 −×  to 3104 −× , which, as confirmed by Fig. 14(b), is sufficiently small for the 

linear theory to be applicable. Our theory, as demonstrated by Fig. 15(a), predicts for all 

cases oscillations around an average value, which is less than unity. This is consistent 

with our previous results (Fig. 11): the shock passage decreases the average lateral non-

uniformity of the density distribution. 

 Here again, Fig. 15(b) shows that the simulation started with a too large time step 

1.00 =∆t  ps yields a result, which is qualitatively incorrect, and its deviation from the 

exact solution grows linearly with time. The choice of a very small initial time step 
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10 =∆t  fs, helped to improve the agreement, see Fig. 15(c). However, even in the latter 

case our numerical modeling displays a slow negative linear growth of δm, which should 

not be there: it is a numerical artifact. 

V. CONCLUSIONS  

 We have developed a small-amplitude theory describing the interaction of planar, 

constant-strength shock waves with pre-shock non-uniformities distributed in the volume 

of a shocked fluid. This theory describes the distortion of the shock front and the post-

shock flow, including the lateral mass redistribution. Predictions of our theory are in 

good qualitative agreement with the known results of numerical simulations. For 

example, a shock wave was shown to “mix” low- and high-density mass, thus reducing 

the average density non-uniformity in a shocked volume, in an agreement with the 

simulations of Ref. 7, where a foam-like medium was modeled. For a “joint” pre-shock 

density perturbation, localized in one transverse direction, the leading edge of the 

distorted shock wave was found to remain localized near the “joint” and maintain a 

constant curvature/length scale determined by the joint width, whereas the shock front as 

a whole approaches a self-similar shape, in agreement with the numerical results of Ref. 

8, where a laser target containing an actual joint was modeled. A slightly simpler 

behavior was found for a “tube” pre-shock density perturbation, localized in both 

transverse directions: the shock front distortion is finite and contained in the vicinity of 

the “tube,” whereas the RM-type growth of the areal mass modulation, not being limited, 

remains localized, in agreement with the numerical results obtained in Ref. 9 for laser 

targets with feeding tubes.  
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 The importance of our results stems from the fact that these details of shock 

distorting and post-shock behavior have been quantified and described by exact analytical 

solutions. Such solutions are very helpful for testing the accuracy of the hydrodynamic 

simulation codes, particularly when such codes must be used to model the growth of 

perturbations starting from their very small initial amplitudes. Small-amplitude 

perturbations are notoriously hard to resolve, and there is always a risk either to 

contaminate the simulation results with a numerical noise or to damp them heavily with a 

numerical dissipation.31 Our numerical examples with small pre-shock density 

perturbations demonstrate that it does not take much for the numerical solution to deviate 

from the exact analytical solution, and that in the absence of acceleration this numerical 

error tends to grow linearly with time, in a RM-type fashion. Unless the code has been 

thoroughly tested in this regime, such deviations are likely to remain undetected in 

realistic multi-mode simulations, where the exact solution is unknown. 

 For the constant-strength shocks propagating into a uniform (on the average) 

density target, the theory is essentially complete. It is very important to generalize it for 

shock waves whose strength decreases with time, including those propagating up the 

density gradients in the laser targets. This advancement is needed make the theory 

directly applicable to the situations relevant for laser imprint suppression and adiabat 

shaping with the aid of a spike pre-pulse producing a shock-rarefaction flow.2, 3, 5 Exact 

and approximate analytical results of the linear stability analysis obtained for the related 

cases of impulsive loading4 and Vishniac instability of a blast wave,35 respectively, 

indicate feasibility of this development. 
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APPENDIX: DERIVATION OF THE LAPLACE-TRANSORMED SOLUTIONS  

When the shock wave is driven by a piston starting from 0=t , we impose the 

boundary condition (11) or (12) at 0=x  for all time. This boundary condition requires 

the existence of reflected pressure waves in the positive x-direction, following the shock 

front. As a consequence, the Laplace transform for the shock pressure perturbations has 

to be obtained from an inhomogeneous functional equation.16, 22, 24 Due to this, the 

mathematical structure of the solution in a general case cannot be presented by a simple 

closed expression like that of Eqs. (43) and (68). The actual formula for sP
~

consists of an 

infinite sum of more or less complicated functions. Each term in the sum appears as a 

consequence of the multiple reverberations of sonic waves that take place between the 

shock surface and the piston. For such boundary condition, we consider the full problem 

of the “quilt” pre-shock density modulation. After some algebra, using the method 

described in Ref.16, it can be shown that the pressure function sP
~

 is the solution of a 

functional equation:16 

,)2(~)()()(~
21 sss qPqqqP θλλ ++=       (A1)  

where the Laplace-transform variable s is related to q  by qs sinh= . The characteristic 

that makes the above equation more difficult to solve is the fact that the argument of the 
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pressure is “shifted” by the amount sθ2  in the right-hand-side of Eq. (A1). This shift in 

the equation is necessary to take into account the multiple reverberations between the  

shock and the piston, and the Doppler shift that occurs after each reflection at the shock 

surface.24 The functions )(1 qλ  and )(2 qλ for the double-periodic “quilt” pre-shock 

density modulation, with rigid piston, free surface or isolated shock boundary conditions, 

are: 
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Here pR  is the reflection coefficient for sonic waves incident upon the piston ( 1=pR , 

1− , and 0 for the rigid piston, free surface and isolated shock boundary conditions, 

respectively), and 0
~

sp  is the initial pressure perturbation amplitude at the piston surface. 

Its value for the rigid piston boundary condition is obtained from the perturbed Rankine-

Hugoniot equations evaluated at += 0t : 

 )1(
1

~
2
1

2
2

2
1

0 −
+

= R
M

MM
p ks ε ;       (A4) 

for the free surface boundary condition, 0~
0 =sp , as follows from (12), and for the 

isolated shock boundary condition it is given by (48).  

 The solution to Eq. (A1) is the sum of a solution of the homogeneous equation 

plus a particular solution. As our gas has an ideal EOS, it is not difficult to see that the 
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only acceptable solution to the homogeneous equation is the trivial zero function.24 An 

exact particular solution of (A1) is easily obtained by iterations:16 

 ∑ ∏
∞

=

−

=

+++=
1

1

0
211 )2()2()()(~

n

n

m
sss mqnqqqP θλθλλ .    (A5) 

 With another EOS, different from an ideal gas, the homogeneous equation could 

contribute with a non-zero solution and therefore, another modes could be excited at the 

shock surface.24  For the case of isolated shock boundary condition, 0=pR , and 

therefore all the terms with shifted arguments sq θ2+  describing reverberations in (A2), 

(A3)  vanish, so that 0)(2 ≡qλ . Hence in the right-hand side of (A5) only the first term 

remains, and this solution is reduced to (68), or, in a particular case of  the “stripes” pre-

shock density modulation, to (43). For other boundary conditions, the inversion of (A5) 

needed to get the complete temporal evolution requires the evaluation of a sufficiently 

large number of terms, similarly to the case of the classical RM instability studied in Ref. 

16, hence the temporal solution could be rather complicated. Usually, few terms are 

sufficient.  We can calculate the complete temporal evolution starting from += 0t  by two 

different procedures: using the original functional equation (A1) or its exact solution 

provided by Eq. (A5). If we expand )(
~

qPs  into a power series in )exp( q−  and substitute 

it into Eq. (A1), as suggested for the first time by Zaidel,22 we could equate powers  of 

)exp( q− and get the complete temporal solution in the whole fluid as a series of Bessel 

functions of integer order, because the inverse Laplace transform of the nth integer power  

of )exp( q−  is ssn rrnJ /)( , where sr  is given by (50). An alternative way consists of 

truncating Eq. (A5) at some order and constructing an integral representation of the 

pressure perturbations at the shock front, as was done for the isolated shock boundary 
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condition, see Eqs. (49), (55) and (58). It must be taken into account that the order of 

truncation will depend on the value of sθ , which is a monotonically decreasing function 

of 1M . As the shock strength increases, more terms should be retained, at least to 

accurately describe the sonic reverberations and the vorticity/entropy generation behind 

the shock front, when the shock is not very far from the surface 0=x . To do this, we 

must construct an auxiliary function )(zf p  [as in Eqs. (49), (55) and (58)], that would be 

essentially the imaginary part of )(~ izPs  evaluated at both sides of the imaginary axis 

along the segment ],[ ii− , with the multi-valued character of expressions like 

12 +s properly taken into account. It is quite clear that more complicated boundary 

conditions result in more complicated mathematical structure of the function )(zf p . In 

the case of an isolated shock, we have obtained a very simple closed form expression for 

this auxiliary kernel. This may not be so for the rigid piston boundary, as the algebraic 

complexity of )(zf p  will depend on the level of truncation of the infinite series given by 

Eq. (A5). Nevertheless, despite of these algebraic complications, the exact solution given 

by Eq. (A5) shows its power and beauty in providing us with important information on 

the behavior at large times.  

For the long-wavelength regime, 10 <ζ , it is easy to see that we obtain the same 

final asymptotic behavior as in the isolated shock case, given already in Eqs. (32) and 

(61). The only substantial difference between the isolated shock and the rigid piston case 

lies in the amplitudes of the temporal decaying terms. But once this transient behavior 

becomes negligible, the final oscillatory response is the same for both cases, 

independently of the boundary conditions far downstream of the shock surface. In this 
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regime, the only term that contributes with an oscillatory asymptotic is the first term that 

appears in )(1 qλ : 

α20

sinh2 q +ζ 0
2

1
coshq −α1(q)

,       (A6) 

with two poles at 0ζis ±= . This expression reproduces the exact solution to the isolated 

shock problem, Eq. (68), which explains why the asymptotic expressions coincide in the 

long-wavelength regime. The other terms that appear in Eq. (A5) are due to the multiple 

reverberations that occur between the rigid wall and the shock surface and their 

contribution for large times is an oscillation with an amplitude that decays as 2/3−t . These 

additional terms are actually negligible for very weak shocks because 

( ) ∞→−−≅ 1ln)2/1( 1Msθ  as 1M  approaches unity, making those terms less important 

than the one shown in Eq. (A6). 

 However, within the remaining terms that represent the multiple reverberations of 

the sonic waves in Eq. (69), we recognize contributions of the form: 

 
α20

sinh2(q + 2θs) +ζ 0
2

1
cosh(q + 2θs) −α1(q + 2θs)

.    (A7) 

Higher-order terms like one shown in Eq. (A7) (involving functions with arguments of 

the shifted form sq θ4+ , sq θ6+ , etc.) might contribute pure imaginary poles. These 

poles are imaginary roots of the equation sinh2(q + 2nθs) +ζ 0
2 = 0, with 1≥n  any 

positive integer; they add “extra” non-decaying oscillations at normalized frequencies 

lower than 0ζ . Indeed, we find two such terms, with a shift equal to sθ2  for 1=n . Those 

terms contribute pure imaginary poles in the short-wavelength regime, when not only 

10 >ζ , but also a stricter condition (77) is satisfied. The number N of these poles is given 
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by Eq. (80). Non-decaying oscillations corresponding to the shock front perturbation 

amplitudes from the poles are given by the 1=n , 2, …, N terms of the sums (81), (82). 

The value of n for each of these terms corresponds to the number of reflections from the 

piston. 

 For the free surface boundary condition, the piston surface 0=x  after += 0t  

becomes a vortex sheet, which exhibits a RM-type instability.1 It is not difficult to arrive 

to a formula for the asymptotic growth rate at the rippled surface/interface, which is valid 

both for the isolated shock case and for the free surface case in the long-wavelength 

regime. The calculations are similar to those outlined in detail in Ref. 16. We obtain the 

following expression for the Laplace transform of the ripple x-velocity at 0=x : 

( ) ( )[ ] ( ) ( ) 
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where the velocity perturbation at += 0t  is defined below Eq. (88) . The Laplace 

transform (A8) shows a pole at 0=s , giving rise to a constant asymptotic rate of linear 

growth.16 It also can have imaginary poles at 1ζ , 3ζ  …, describing sonic oscillations, 

when the conditions for those oscillations to exist are satisfied: sn θσ )12(0 −> , 1=n , 2, 

…, cf. (78). Their number is given by (89), and their normalized frequencies - by (90). 

The asymptotic time dependence corresponding to (A8) is given by (91). 
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 Figure 1. Density maps showing examples of the pre-shock density modulation: 
(a) periodic in the lateral direction (“stripes”); (b) periodic in both lateral and longitudinal 
directions (“quilt”); (c) periodic in the lateral direction and concentrated near the surface; 
(d) non-periodic, Gaussian density profile in the lateral direction. 
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 Figure 2. Density perturbation map illustrating formulation of the problem for the 
“stripes” case of Fig. 1(a). The shock wave is driven by a rigid piston in the positive x 
direction. Density modulation of the pre-shock fluid 1 is periodic in y, independent of 
time and the longitudinal coordinate x. The flow of the shocked fluid 2 is non-steady and 
x-dependent but maintains the original periodicity in the lateral direction y. The shape of 
the perturbed shock front is a single-mode sine wave whose amplitude is denoted by sxδ . 
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 Figure 3. Normalized shock ripple amplitude sxkδ vs. normalized time kDt  for 
the “stripes” case of the pre-shock density modulation, 3/5=γ , 101 =M . Dotted line 
displays the asymptotic value (34), thick, thin and gray solid lines correspond to the rigid 
piston, free surface and isolated shock boundary conditions, respectively.  
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 Figure 4. Normalized shock displacement amplitude sxqδ  (a) and normalized 
curvature of the shock front qR/1 at 0=r  (b)  vs.  normalized time qDt  for the 
cylindrical Gaussian “tube” localized pre-shock density perturbation,  3/5=γ , 101 =M . 
Thick and thin solid lines correspond to the rigid piston and free surface boundary 
conditions at the piston surface, respectively. Horizontal dotted lines show the asymptotic 
values (60) and (61). 
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 Figure 5. Normalized shock displacement amplitude sxqδ  (a) and normalized 
curvature of the shock front qR/1 at 0=y  (b)  vs.  normalized time qDt  for the planar 
Gaussian “joint” localized pre-shock density perturbation,  3/5=γ , 101 =M . Thick and 
thin solid lines correspond to the rigid piston and free surface boundary conditions at the 
piston surface, respectively. Dotted lines in (a) show the asymptotic formulae (66) for 
each boundary condition; horizontal dotted line in (b) shows the asymptotic curvature 
(67). 
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 Figure 6. Normalized shock ripple amplitude sxkδ vs. normalized time kDt  for 
the long-wavelength “quilt” case of the pre-shock density modulation, 3/5=γ , 101 =M , 

5/1/ =yx kk . Dotted line displays the asymptotic formula (35), thick, thin and gray solid 
lines correspond to the rigid piston, free surface and isolated shock boundary conditions, 
respectively.  
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 Figure 7. Normalized shock ripple amplitude sxkδ vs. normalized time kDt  for 
the short-wavelength “quilt” case of the pre-shock density modulation: 3/5=γ , 

101 =M , 1/ =yx kk : (a) Dotted line displays the asymptotic formula (35), gray line – the 
exact solution for isolated shock. (b) Thick and thin solid lines correspond to the exact 
solution for rigid piston and the free surface boundary conditions, respectively, circles 
and diamonds – to Eq. (82) with 1=pR  and 1− , respectively. 
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 Figure 8. Normalized shock ripple amplitude sxkδ vs. normalized time kDt  for 
the pre-shock standing sonic wave, 3/5=γ , 101 =M  (a) and 251 =M (b). Dotted line 
displays the asymptotic shape (32), thick and thin solid lines correspond to the rigid 
piston and free surface boundary conditions at the piston surface, respectively.  
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 Figure 9. Longitudinal velocity perturbation amplitude at 0=x  vs. normalized 
time kDt for an isolated shock wave interacting with a “quilt” pre-shock density 
perturbation shown as gray line. (a) Long-wavelength regime, 5/1/ =yx kk ; horizontal 
dashed line – late-time asymptotic value given by (88). (b)  Short-wavelength regime, 

1/ =yx kk ; dotted line - late-time asymptotic oscillations given by (91),  horizontal 

dashed line – average late-time value given by (88). For both cases, 3/5=γ , 101 =M . 
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 Figure 10. Normalized displacement amplitude of the piston surface pxkδ  (thick), 

its time derivative pV (thin), and the constant asymptotic value (88) (horizontal dashed 
line) (a); time derivative of areal mass modulation amplitude mδ (thick) and contribution 
to it due to the surface ripple (thin line)  (b) vs. normalized time kDt  for the “stripes” 
pre-shock density perturbation,  3/5=γ , 101 =M , free surface boundary conditions at 
the piston.  
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 Figure 11. (a) Normalized areal mass modulation amplitude vs. normalized time 
kDt   for the “stripes” pre-shock density perturbation, 3/5=γ , 101 =M , rigid piston. (b) 
Relative post-shock density modulation amplitude profiles 2/~ ρδρρ =  shown at the 
times when the shock wave traveled 1, 2, 3, 4 and 5 lateral perturbation wavelengths 
(solid lines). Dotted horizontal line indicates the pre-shock relative density perturbation 
amplitude.  
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 Figure 12. Normalized displacement of the ablation front axkδ (a) and areal mass 
modulation amplitude mδ  (b) vs. normalized time kDt   for a “stripes” density 
perturbation 3/5=γ , 101 =M , and an ablation front with 0625.0=Dr , 05.0=aM  
acting as a piston. 
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 Figure 13. Normalized time derivatives of the areal mass modulation amplitude 

mδ  for surface ripples (thick lines), exponential (a) and Bessel-function (b) localized 
density perturbations in the target (thin lines, labeled by the value of the parameter kq / ) 
vs.  normalized time kDt  for 3/5=γ , 101 =M .  

0

0.2

0.4

0.6
(d/dt)δm

2
1

4

3

(a)

0

0.2

0.4

0.6

0 10 20

(b)

kDt

1

3
2

4



Phys. Plasmas 14, 072706 (2007)  74 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 14. Theoretical and simulated time histories of normalized areal mass 
modulation amplitude for the “stripes” case: 3/5=γ , 101 =M , lateral perturbation 
wavelength 30=λ  µm, rigid piston velocity 6104 ×=pV  cm/s. Lines 1 through 4 

correspond to the values of the small-amplitude parameter 4105 −×=ε , 3105.2 −× , 
210− and 2105 −× , respectively. (a) Simulation done with a constant time step; (b) time 

step initially reduced. 
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 Figure 15. Normalized areal mass modulation amplitude mδ  vs. time for density 
modulation profiles (97) localized near the surface: 3/5=γ , 101 =M , lateral 
perturbation wavelength 30/2 == qπλ  µm, rigid piston velocity 6104 ×=pV  cm/s; in 

the simulations, effective ripple amplitude 1.00 =xδ  µm: (a) theory, (b) simulation with 
constant time step, (c) simulations with initially reduced time step. Lines 0 through 4 are 
indexed by the value of the parameter n in (97). 
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